Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mechanical Systems a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanical Systems and Signal Processing
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data

Authors: Sai Hung Cheung; Sahil Bansal;

A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data

Abstract

Abstract Model updating using measured system dynamic response has a wide range of applications in system response evaluation and control, health monitoring, or reliability and risk assessment. In this paper, we are interested in model updating of a linear dynamic system with non-classical damping based on incomplete modal data including modal frequencies, damping ratios and partial complex mode shapes of some of the dominant modes. In the proposed algorithm, the identification model is based on a linear structural model where the mass and stiffness matrix are represented as a linear sum of contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures, and the damping matrix is represented as a sum of individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of Rayleigh damping or a combination of the former. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. A new Gibbs-sampling based algorithm is proposed that allows for an efficient update of the probability distribution of the model parameters. In addition to the model parameters, the probability distribution of complete mode shapes is also updated. Convergence issues and numerical issues arising in the case of high-dimensionality of the problem are addressed and solutions to tackle these problems are proposed. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!