Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Cybernetics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization

Authors: Abhishek Kumar; Swagatam Das; Rammohan Mallipeddi;

A Reference Vector-Based Simplified Covariance Matrix Adaptation Evolution Strategy for Constrained Global Optimization

Abstract

During the last two decades, the notion of multiobjective optimization (MOO) has been successfully adopted to solve the nonconvex constrained optimization problems (COPs) in their most general forms. However, such works mainly utilized the Pareto dominance-based MOO framework while the other successful MOO frameworks, such as the reference vector (RV) and the decomposition-based ones, have not drawn sufficient attention from the COP researchers. In this article, we utilize the concepts of the RV-based MOO to design a ranking strategy for the solutions of a COP. We first transform the COP into a biobjective optimization problem (BOP) and then solve it by using the covariance matrix adaptation evolution strategy (CMA-ES), which is arguably one of the most competitive evolutionary algorithms of current interest. We propose an RV-based ranking strategy to calculate the mean and update the covariance matrix in CMA-ES. Besides, the RV is explicitly tuned during the optimization process based on the characteristics of COPs in a RV-based MOO framework. We also propose a repair mechanism for the infeasible solutions and a restart strategy to facilitate the population to escape from the infeasible region. We test the proposal extensively on two well-known benchmark suites comprised of 36 and 112 test problems (at different scales) from the IEEE CEC (Congress on Evolutionary Computation) 2010 and 2017 competitions along with a real-world problem related to power flow. Our experimental results suggest that the proposed algorithm can meet or beat several other state-of-the-art constrained optimizers in terms of the performance on a wide variety of problems.

Keywords

Biological Evolution, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!