Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Scientifi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Scientific Computing
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Posteriori Error Analysis for a Coupled Stokes-Poroelastic System with Multiple Compartments

A posteriori error analysis for a coupled Stokes-poroelastic system with multiple compartments
Authors: Ivan Fumagalli; Nicola Parolini; Marco Verani;

A Posteriori Error Analysis for a Coupled Stokes-Poroelastic System with Multiple Compartments

Abstract

Abstract The computational effort entailed in the discretization of fluid-poromechanics systems is typically highly demanding. This is particularly true for models of multiphysics flows in the brain, due to the geometrical complexity of the cerebral anatomy—requiring a very fine computational mesh for finite element discretization—and to the high number of variables involved. Indeed, this kind of problems can be modeled by a coupled system encompassing the Stokes equations for the cerebrospinal fluid in the brain ventricles and Multiple-network Poro-Elasticity (MPE) equations describing the brain tissue, the interstitial fluid, and the blood vascular networks at different space scales. The present work aims to rigorously derive a posteriori error estimates for the coupled Stokes-MPE problem, as a first step towards the design of adaptive refinement strategies or reduced order models to decrease the computational demand of the problem. Through numerical experiments, we verify the reliability and optimal efficiency of the proposed a posteriori estimator and identify the role of the different solution variables in its composition.

Related Organizations
Keywords

J.2, J.3, Linear elasticity with initial stresses, PDEs in connection with biology, chemistry and other natural sciences, G.1.8, fluid-poromechanics interaction, Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Physiological flows, Stokes and related (Oseen, etc.) flows, Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.), cerebrospinal fluid, Article, Finite difference methods for initial value and initial-boundary value problems involving PDEs, FOS: Mathematics, Mathematics - Numerical Analysis, Computational methods for problems pertaining to biology, Physiological flow, Flows in porous media; filtration; seepage, Numerical Analysis (math.NA), G.1.8; J.2; J.3, Error bounds for initial value and initial-boundary value problems involving PDEs, multiple-network poroelasticity, a posteriori estimates, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, 65N15, 65N22, 65N30, 76Z05, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Funded by