
Considérons une équation de matrice de Sylvester-transposition généralisée avec des matrices de coefficients rectangulaires. Sur la base des gradients et du principe d'identification hiérarchique, nous dérivons un algorithme itératif pour produire une séquence de solutions approchées avec une règle d'arrêt raisonnable concernant une erreur normative relative. Une analyse de convergence via le théorème à virgule fixe de Banach révèle que la séquence converge vers une solution unique de l'équation matricielle pour une matrice initiale donnée si et seulement si le facteur de convergence est choisi de manière appropriée dans une certaine plage. La performance de l'algorithme est théoriquement analysée à travers les estimations du taux de convergence et des erreurs. Le facteur de convergence optimal est choisi pour atteindre le comportement asymptotique le plus rapide. Enfin, des expériences numériques sont fournies pour illustrer la capacité et l'efficacité de l'algorithme proposé, par rapport aux algorithmes itératifs récents basés sur le gradient.
Considere una ecuación de matriz de transposición de Sylvester generalizada con matrices de coeficientes rectangulares. Basándonos en gradientes y en el principio de identificación jerárquica, derivamos un algoritmo iterativo para producir una secuencia de soluciones aproximadas con una regla de parada razonable con respecto a un error de norma relativo. Un análisis de convergencia a través del teorema de punto fijo de Banach revela que la secuencia converge a una solución única de la ecuación de la matriz para cualquier matriz inicial dada si y solo si el factor de convergencia se elige adecuadamente en un cierto rango. El rendimiento del algoritmo se analiza teóricamente a través de la tasa de convergencia y las estimaciones de errores. El factor de convergencia óptimo se elige para alcanzar el comportamiento asintótico más rápido. Finalmente, se proporcionan experimentos numéricos para ilustrar la capacidad y eficiencia del algoritmo propuesto, en comparación con los algoritmos iterativos basados en gradientes recientes.
Consider a generalized Sylvester-transpose matrix equation with rectangular coefficient matrices. Based on gradients and hierarchical identification principle, we derive an iterative algorithm to produce a sequence of approximated solutions with a reasonable stopping rule concerning a relative norm-error. A convergence analysis via Banach fixed-point theorem reveals the sequence converges to a unique solution of the matrix equation for any given initial matrix if and only if the convergence factor is chosen appropriately in a certain range. The performance of algorithm is theoretically analysed through the convergence rate and error estimations. The optimal convergence factor is chosen to attain the fastest asymptotic behaviour. Finally, numerical experiments are provided to illustrate the capability and efficiency of the proposed algorithm, compared to recent gradient-based iterative algorithms.
ضع في اعتبارك معادلة مصفوفة سيلفستر- ترانسبوز المعممة بمصفوفات المعاملات المستطيلة. استنادًا إلى التدرجات ومبدأ التحديد الهرمي، نستمد خوارزمية تكرارية لإنتاج سلسلة من الحلول التقريبية مع قاعدة إيقاف معقولة تتعلق بخطأ معياري نسبي. يكشف تحليل التقارب عبر نظرية النقطة الثابتة لبنك أن التسلسل يتقارب إلى حل فريد لمعادلة المصفوفة لأي مصفوفة أولية معينة إذا وفقط إذا تم اختيار عامل التقارب بشكل مناسب في نطاق معين. يتم تحليل أداء الخوارزمية نظريًا من خلال معدل التقارب وتقديرات الخطأ. يتم اختيار عامل التقارب الأمثل لتحقيق أسرع سلوك مقارب. أخيرًا، يتم توفير تجارب رقمية لتوضيح قدرة وكفاءة الخوارزمية المقترحة، مقارنة بالخوارزميات التكرارية الحديثة القائمة على التدرج.
Economics, Parameter Estimation, Matrix (chemical analysis), generalized Sylvester-transpose matrix equation, Engineering, Banach fixed-point theorem, Equations involving linear operators, with operator unknowns, Eigenvalues and eigenvectors, Numerical Analysis, Computer network, Numerical Optimization Techniques, Physics, Mathematical optimization, Rate of convergence, Iterative method, kronecker product, gradient, Algorithm, generalized sylvester-transpose matrix equation, Computational Theory and Mathematics, Numerical methods for matrix equations, Physical Sciences, Convergence (economics), Iterative Methods, Composite material, banach fixed-point theorem, Kronecker product, Convex Optimization, Convergence tests, Quantum mechanics, matrix norm, QA1-939, FOS: Mathematics, Genetics, Norms of matrices, numerical range, applications of functional analysis to matrix theory, Transpose, Biology, Economic growth, Matrix Algorithms and Iterative Methods, Matrix equations and identities, Applied mathematics, System Identification Techniques, Computer science, Materials science, Control and Systems Engineering, Channel (broadcasting), FOS: Biological sciences, Computer Science, Mathematics, Matrix Computations, Sequence (biology)
Economics, Parameter Estimation, Matrix (chemical analysis), generalized Sylvester-transpose matrix equation, Engineering, Banach fixed-point theorem, Equations involving linear operators, with operator unknowns, Eigenvalues and eigenvectors, Numerical Analysis, Computer network, Numerical Optimization Techniques, Physics, Mathematical optimization, Rate of convergence, Iterative method, kronecker product, gradient, Algorithm, generalized sylvester-transpose matrix equation, Computational Theory and Mathematics, Numerical methods for matrix equations, Physical Sciences, Convergence (economics), Iterative Methods, Composite material, banach fixed-point theorem, Kronecker product, Convex Optimization, Convergence tests, Quantum mechanics, matrix norm, QA1-939, FOS: Mathematics, Genetics, Norms of matrices, numerical range, applications of functional analysis to matrix theory, Transpose, Biology, Economic growth, Matrix Algorithms and Iterative Methods, Matrix equations and identities, Applied mathematics, System Identification Techniques, Computer science, Materials science, Control and Systems Engineering, Channel (broadcasting), FOS: Biological sciences, Computer Science, Mathematics, Matrix Computations, Sequence (biology)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
