Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Вавиловский журнал г...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convolutional neural networks for classifying healthy individuals practicing or not practicing meditation according to the EEG data

Authors: X. Fu; S. S. Tamozhnikov; A. E. Saprygin; N. A. Istomina; A. N. Klemeshova; A.  N. Savostyanov;

Convolutional neural networks for classifying healthy individuals practicing or not practicing meditation according to the EEG data

Abstract

The development of objective methods for assessing stress levels is an important task of applied neuroscience. Analysis of EEG recorded as part of a behavioral self-control program can serve as the basis for the development of test methods that allow classifying people by stress level. It is well known that participation in meditation practices leads to the development of skills of voluntary self-control over the individual’s mental state due to an increased concentration of attention to themselves. As a consequence of meditation practices, participants can reduce overall anxiety and stress levels. The aim of our study was to develop, train and test a convolutional neural network capable of classifying individuals into groups of practitioners and non-practitioners of meditation by analysis of eventrelated brain potentials recorded during stop-signal paradigm. Four non-deep convolutional network architectures were developed, trained and tested on samples of 100 people (51 meditators and 49 non-meditators). Subsequently, all structures were additionally tested on an independent sample of 25 people. It was found that a structure using a one-dimensional convolutional layer combining the layer and a two-layer fully connected network showed the best performance in simulation tests. However, this model was often subject to overfitting due to the limitation of the display size of the data set. The phenomenon of overfitting was mitigated by changing the structure and scale of the model, initialization network parameters, regularization, random deactivation (dropout) and hyperparameters of cross-validation screening. The resulting model showed 82 % accuracy in classifying people into subgroups. The use of such models can be expected to be effective in assessing stress levels and inclination to anxiety and depression disorders in other groups of subjects.

Keywords

meditation, event-related brain potentials, convolutional neural networks, Genetics, Original Article, eeg, QH426-470, stop-signal paradigm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold