
The detection and measurement of crack at pixel level is a challenge to existing methods. To overcome this challenge, this paper proposes a convolutional encoder-decoder network (CedNet) to detect crack from image, and the maximum widths and orientations of cracks are measured using image post-processing techniques. To realize this, a database including 1800 crack images (with 761×569 pixel resolution) taken from concrete structures is built. Then the CedNet is designed, trained and validated using the built database. The validating results show 98.90% accuracy, 93.58% precision, 94.73% recall, 93.18% F-measure, 87.23% intersection over union (IoU) of crack and 98.82% IoU of background. Subsequently, the robustness and adaptability of the trained model is tested. To measure true maximum widths and orientations of cracks, a laboratory experiment is carried out to calibrate a relation between ratio (pixel distance / real distance) and field of view (camera's view range on concrete surface included in image) and distance from the smartphone to concrete surface. In the post-processing techniques, the perspective transformation is employed to correct distorted images caused by the existence of the oblique angles between the smartphone and concrete surfaces. Then the maximum widths and orientations of cracks in predicted results are measured respectively using the Euclidean distance transformation and least squares principle. As comparison, two existing deep learning-based crack detection and measurement method are used to examine the performance of the proposed approach. The comparison results show that the proposed method substantiates quite good performance to detect cracks and measure maximum widths and orientations of cracks in our database.
Concrete crack, detection and measurement, deep learning, Electrical engineering. Electronics. Nuclear engineering, convolutional encoder-decoder network, TK1-9971
Concrete crack, detection and measurement, deep learning, Electrical engineering. Electronics. Nuclear engineering, convolutional encoder-decoder network, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
