Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic Crack Detection and Measurement of Concrete Structure Using Convolutional Encoder-Decoder Network

Authors: Shengyuan Li; Xuefeng Zhao;

Automatic Crack Detection and Measurement of Concrete Structure Using Convolutional Encoder-Decoder Network

Abstract

The detection and measurement of crack at pixel level is a challenge to existing methods. To overcome this challenge, this paper proposes a convolutional encoder-decoder network (CedNet) to detect crack from image, and the maximum widths and orientations of cracks are measured using image post-processing techniques. To realize this, a database including 1800 crack images (with 761×569 pixel resolution) taken from concrete structures is built. Then the CedNet is designed, trained and validated using the built database. The validating results show 98.90% accuracy, 93.58% precision, 94.73% recall, 93.18% F-measure, 87.23% intersection over union (IoU) of crack and 98.82% IoU of background. Subsequently, the robustness and adaptability of the trained model is tested. To measure true maximum widths and orientations of cracks, a laboratory experiment is carried out to calibrate a relation between ratio (pixel distance / real distance) and field of view (camera's view range on concrete surface included in image) and distance from the smartphone to concrete surface. In the post-processing techniques, the perspective transformation is employed to correct distorted images caused by the existence of the oblique angles between the smartphone and concrete surfaces. Then the maximum widths and orientations of cracks in predicted results are measured respectively using the Euclidean distance transformation and least squares principle. As comparison, two existing deep learning-based crack detection and measurement method are used to examine the performance of the proposed approach. The comparison results show that the proposed method substantiates quite good performance to detect cracks and measure maximum widths and orientations of cracks in our database.

Keywords

Concrete crack, detection and measurement, deep learning, Electrical engineering. Electronics. Nuclear engineering, convolutional encoder-decoder network, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 1%
Top 10%
Top 1%
gold