
arXiv: 2507.14235
Automated grading systems, or auto-graders, have become ubiquitous in programming education, and the way they generate feedback has become increasingly automated as well. However, there is insufficient evidence regarding auto-grader feedback's effectiveness in improving student learning outcomes, in a way that differentiates students who utilized the feedback and students who did not. In this study, we fill this critical gap. Specifically, we analyze students' interactions with auto-graders in an introductory Python programming course, offered at five community colleges in the United States. Our results show that students checking the feedback more frequently tend to get higher scores from their programming assignments overall. Our results also show that a submission that follows a student checking the feedback tends to receive a higher score than a submission that follows a student ignoring the feedback. Our results provide evidence on auto-grader feedback's effectiveness, encourage their increased utilization, and call for future work to continue their evaluation in this age of automation
FOS: Computer and information sciences, Computers and Society (cs.CY), Computers and Society
FOS: Computer and information sciences, Computers and Society (cs.CY), Computers and Society
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
