
arXiv: 1601.05650
We consider the rate distortion problem with side information at the decoder posed and investigated by Wyner and Ziv. The rate distortion function indicating the trade-off between the rate on the data compression and the quality of data obtained at the decoder was determined by Wyner and Ziv. In this paper, we study the error probability of decoding at rates below the rate distortion function. We evaluate the probability of decoding such that the estimation of source outputs by the decoder has a distortion not exceeding a prescribed distortion level. We prove that when the rate of the data compression is below the rate distortion function this probability goes to zero exponentially and derive an explicit lower bound of this exponent function. On the Wyner-Ziv source coding problem the strong converse coding theorem has not been established yet. We prove this as a simple corollary of our result.
17 pages, 1 figures, extended version of ISITA 2016 submission. arXiv admin note: text overlap with arXiv:1504.05891
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
