Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Soft Computi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Soft Computing
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis

Authors: Kuo R.J.; Lin T.C.; Zulvia F.E.; Tsai C.Y.;

A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis

Abstract

Abstract Cluster analysis is a very useful data mining approach. Although many clustering algorithms have been proposed, it is very difficult to find a clustering method which is suitable for all types of datasets. This study proposes an evolutionary-based clustering algorithm which combines a metaheuristic with a kernel intuitionistic fuzzy c-means (KIFCM) algorithm. The KIFCM algorithm improves the fuzzy c-means (FCM) algorithm by employing an intuitionistic fuzzy set and a kernel function. According to previous studies, the KIFCM algorithm is a promising algorithm. However, it still has a weakness due to its high sensitivity to initial centroids. Thus, this study overcomes this problem by using a metaheuristic algorithm to improve the KIFCM result. The metaheuristic can provide better initial centroids for the KIFCM algorithm. This study applies three metaheuristics, particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC) algorithms. Though the hybrid method is not new, this is the first paper to combine metaheuristics and KIFCM. The proposed algorithms, PSO-KIFCM, GA-KIFCM and ABC-KIFCM algorithms are evaluated using six benchmark datasets. The results are compared with some other clustering algorithms, namely K-means, FCM, Kernel fuzzy c-means (KFCM) and KIFCM algorithms. The results prove that the proposed algorithms achieve better accuracy. Furthermore, the proposed algorithms are applied to solve a case study on customer segmentation. This case study is taken from franchise stores selling women's clothing in Taiwan. For this case study, the proposed algorithms also exhibit better cluster construction than other tested algorithms.

Keywords

Artificial bee colony algorithm, Cluster analysis, Genetic algorithm, Fuzzy c-means, Particle swarm optimization, Kernel function, Metaheuristics, Intuitionistic fuzzy set

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!