
handle: 11368/1848723 , 11390/692631
We present a technique to approximate models of biological systems written in a "distilled" version of stochastic Concurrent Constraint Programming (sCCP), a stochastic programming methodology based on logic programming. Our technique automatically associates to a stochastic model an hybrid automaton, i.e. a dynamical system where continuous and discrete dynamics coexist. The hybrid automata generated in this way are, in certain cases, capable of capturing aspects of the dynamics of stochastic processes that are lost in approximations based solely on ordinary differential equations. In particular, they work better for those systems whose sCCP model contains explicit logical mechanisms of control. In the paper we outline the general technique to perform this association and we discuss some issues related to its applicability.
Computational Systems Biology, Hybrid system, Approximate analysi, Stochastic programming, Stochastic programming; Hybrid systems; Approximate analysis; Computer simulation; Computational Systems Biology, Computer simulation
Computational Systems Biology, Hybrid system, Approximate analysi, Stochastic programming, Stochastic programming; Hybrid systems; Approximate analysis; Computer simulation; Computational Systems Biology, Computer simulation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
