Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.aclweb.o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.aclweb.org/antholo...
Article
License: CC BY
Data sources: UnpayWall
https://doi.org/10.18653/v1/d1...
Article . 2019 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nearly-Unsupervised Hashcode Representations for Biomedical Relation Extraction

Authors: Sahil Garg; Aram Galstyan; Greg Ver Steeg; Guillermo Cecchi;

Nearly-Unsupervised Hashcode Representations for Biomedical Relation Extraction

Abstract

Recently, kernelized locality sensitive hashcodes have been successfully employed as representations of natural language text, especially showing high relevance to biomedical relation extraction tasks. In this paper, we propose to optimize the hashcode representations in a nearly unsupervised manner, in which we only use data points, but not their class labels, for learning. The optimized hashcode representations are then fed to a supervised classifi er following the prior work. This nearly unsupervised approach allows fine-grained optimization of each hash function, which is particularly suitable for building hashcode representations generalizing from a training set to a test set. We empirically evaluate the proposed approach for biomedical relation extraction tasks, obtaining significant accuracy improvements w.r.t. state-of-the-art supervised and semi-supervised approaches.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid