Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/hpec67...
Article . 2025 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Designing Parallel Algorithms for Community Detection using Arachne

Authors: Li, Fuhuan; Du, Zhihui; Bader, David A.;

Designing Parallel Algorithms for Community Detection using Arachne

Abstract

The rise of graph data in various fields calls for efficient and scalable community detection algorithms. In this paper, we present parallel implementations of two widely used algorithms: Label Propagation and Louvain, specifically designed to leverage the capabilities of Arachne, which is a Python-accessible open-source framework for large-scale graph analysis. Our implementations achieve substantial speedups over existing Python-based tools like NetworkX and igraph, which lack efficient parallelization, and are competitive with parallel frameworks such as NetworKit. Experimental results show that Arachne-based methods outperform these baselines, achieving speedups of up to 710x over NetworkX, 75x over igraph, and 12x over NetworKit. Additionally, we analyze the scalability of our implementation under varying thread counts, demonstrating how different phases contribute to overall performance gains of the parallel Louvain algorithm. Arachne, including our community detection implementation, is open-source and available at https://github.com/Bears-R-Us/arkouda-njit .

7 pages, v2: minor revision to match final paper published in the The 29th Annual IEEE High Performance Extreme Computing Conference (HPEC), Virtual, September 15-19, 2025

Related Organizations
Keywords

FOS: Computer and information sciences, Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing, Distributed, Parallel, and Cluster Computing (cs.DC)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green