Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fine-tuning Large Language Model for Automated Algorithm Design

Authors: Liu, Fei; Zhang, Rui; Lin, Xi; Lu, Zhichao; Zhang, Qingfu;

Fine-tuning Large Language Model for Automated Algorithm Design

Abstract

The integration of large language models (LLMs) into automated algorithm design has shown promising potential. A prevalent approach embeds LLMs within search routines to iteratively generate and refine candidate algorithms. However, most existing methods rely on off-the-shelf LLMs trained for general coding tasks,leaving a key question open: Do we need LLMs specifically tailored for algorithm design? If so, how can such LLMs be effectively obtained and how well can they generalize across different algorithm design tasks? In this paper, we take a first step toward answering these questions by exploring fine-tuning of LLMs for algorithm design. We introduce a Diversity-Aware Rank based (DAR) sampling strategy to balance training data diversity and quality, then we leverage direct preference optimization to efficiently align LLM outputs with task objectives. Our experiments, conducted on Llama-3.2-1B-Instruct and Llama- 3.1-8B-Instruct, span three distinct algorithm design tasks. Results suggest that finetuned LLMs can significantly outperform their off-the-shelf counterparts with the smaller Llama-3.2-1B-Instruct and match the larger Llama-3.1-8B-Instruct on the admissible set problem. Moreover, we observe promising generalization: LLMs finetuned on specific algorithm design tasks also improve performance on related tasks with varying settings. These findings highlight the value of task-specific adaptation for LLMs in algorithm design and open new avenues for future research.

Keywords

Machine Learning, FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities