Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Artificial Intellige...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Artificial Intelligence in Agriculture
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digitalizing greenhouse trials: An automated approach for efficient and objective assessment of plant damage using deep learning

Authors: Laura Gómez-Zamanillo; Arantza Bereciartúa-Pérez; Artzai Picón; Liliana Parra; Marian Oldenbuerger; Ramón Navarra-Mestre; Christian Klukas; +2 Authors

Digitalizing greenhouse trials: An automated approach for efficient and objective assessment of plant damage using deep learning

Abstract

The use of image based and, recently, deep learning-based systems have provided good results in several applications. Greenhouse trials are key part in the process of developing and testing new herbicides and analyze the response of the species to different products and doses in a controlled way. The assessment of the damage in the plant is daily done in all trials by visual evaluation by experts. This entails time consuming process and lack of repeatability. Greenhouse trials require new digital tools to reduce time consuming process and to endow the experts with more objective and repetitive methods for establishing the damage in the plants.To this end, a novel method is proposed composed by an initial segmentation of the plant species followed by a multibranch convolutional neural network to estimate the damage level. In this way, we overcome the need for costly and unaffordable pixelwise manual segmentation for damage symptoms and we make use of global damage estimation values provided by the experts.The algorithm has been deployed under real greenhouse trials conditions in a pilot study located in BASF in Germany and tested over four species (GLXMA, TRZAW, ECHCG, AMARE). The results show mean average error (MAE) values ranging from 5.20 for AMARE and 8.07 for ECHCG for the estimation of PDCU value, with correlation values (R2) higher than 0.85 in all situations, and up to 0.92 in AMARE. These results surpass the inter-rater variability of human experts demonstrating that the proposed automated method is appropriate for automatically assessing greenhouse damage trials.

Keywords

Greenhouse, S, Deep learning, Convolutional neural networks, Agriculture, Damage assessment, Regression

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold