
Abstract Phantom sources are known to be perceived similar to real sound sources but with some differences. One of the differences is an increase of the perceived source width. This article discusses the perception, measurement, and modeling of source width for frontal phantom sources with different symmetrical arrangements of up to three active loudspeakers. The perceived source width is evaluated on the basis of a listening test. The test results are compared to technical measures that are applied in room acoustics: the inter-aural cross correlation coefficient (IACC) and the lateral energy fraction (LF). Adaptation of the latter measure makes it possible to predict the results by considering simultaneous sound incidence. Finally, a simple model is presented for the prediction of the perceived source width that does not require acoustic measurements as it is solely based on the loudspeaker directions and gains.
phantom source, IACC, LF, Acoustics. Sound, QC221-246, stereophony, source width, energy vector
phantom source, IACC, LF, Acoustics. Sound, QC221-246, stereophony, source width, energy vector
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
