Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating a sublinear-time algorithm for the Minimum Spanning Tree Weight problem

Authors: Gabriele Santi; Leonardo De Laurentiis;

Evaluating a sublinear-time algorithm for the Minimum Spanning Tree Weight problem

Abstract

We present an implementation and an experimental evaluation of an algorithm that, given a connected graph G (represented by adjacency lists), estimates in sublinear time, with a relative error, the Minimum Spanning Tree Weight of G; the original algorithm has been presented in "Approximating the minimum spanning tree weight in sublinear time", by Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan (published with SIAM, DOI 10.1137/S0097539702403244). Since the theoretical performances have already been shown and demonstrated in the above-mentioned paper, our goal is, exclusively, to experimental evaluate the algorithm and at last to present the results. Initially we discuss about some theoretical aspects that arose while we were valuating the asymptotic complexity of our specific implementation. Some technical insights are then given on the implementation of the algorithm and on the dataset used in the test phase, hence to show how the experiment has been carried out even for reproducibility purposes; the results are then evaluated empirically and widely discussed, comparing these with the performances of the Prim algorithm and the Kruskal algorithm, launching several runs on a heterogeneous set of graphs and different theoretical models for them.

23 pages, 13 figures, project developed during Master's Degree studies

Keywords

G.4, FOS: Computer and information sciences, D.2.8; F.2.0; G.2.2; G.4; I.1.2, G.2.2, D.2.8, I.1.2, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), 68W20, 68W25, 68R10, 68Q25, 68W40, F.2.0

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green