
This paper proposes a constrained alternating least squares nonnegative matrix factorization algorithm (cALSNMF) to enhance alternating least squares non-negative matrix factorization (ALSNMF) in detecting task-related neuronal activity from single subject's fMRI data. In cALSNMF, a new cost function is defined in consideration of the uncorrelation and overdeter-mined problems of fMRI data, A novel training procedure is generated by combining optimal brain surgeon (OBS) algorithm in weight updating process, which considers the interaction among voxels. The experiments on both simulated data and fMRI data show that cALSNMF fits data better without any prior information and works more adaptively than original ALSNMF on detecting task-related neuronal activity.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
