
pmid: 33001821
This article studies the rendezvous problem of linear multiagent systems by parallel event-triggered connectivity-preserving control strategies. There are two distinguished features of our design. First, the event-triggered control laws can not only guarantee the convergence of the tracking error as existing event-triggered consensus control strategies but also have the additional ability to maintain the connectivity of the time-varying and position-dependent communication network as rendezvous control laws. Second, by combining the potential function technique, output regulation theory, and adaptive control technique, an event-triggered observer is applied to estimate both the leader's system matrix and trajectory, which can work in parallel with the connectivity-preserving event-triggered controller. The executive time instants for the observer and the controller are asynchronous and generated by different triggering functions based on their own locally available measurement errors.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
