Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving Generalization of Neural Combinatorial Optimization for Vehicle Routing Problems via Test-Time Projection Learning

Authors: Chen, Yuanyao; Chen, Rongsheng; Luo, Fu; Wang, Zhenkun;

Improving Generalization of Neural Combinatorial Optimization for Vehicle Routing Problems via Test-Time Projection Learning

Abstract

Neural Combinatorial Optimization (NCO) has emerged as a promising learning-based paradigm for addressing Vehicle Routing Problems (VRPs) by minimizing the need for extensive manual engineering. While existing NCO methods, trained on small-scale instances (e.g., 100 nodes), have demonstrated considerable success on problems of similar scale, their performance significantly degrades when applied to large-scale scenarios. This degradation arises from the distributional shift between training and testing data, rendering policies learned on small instances ineffective for larger problems. To overcome this limitation, we introduce a novel learning framework driven by Large Language Models (LLMs). This framework learns a projection between the training and testing distributions, which is then deployed to enhance the scalability of the NCO model. Notably, unlike prevailing techniques that necessitate joint training with the neural network, our approach operates exclusively during the inference phase, obviating the need for model retraining. Extensive experiments demonstrate that our method enables a backbone model (trained on 100-node instances) to achieve superior performance on large-scale Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) of up to 100K nodes from diverse distributions.

arXiv admin note: text overlap with arXiv:2505.24627

Keywords

Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green