Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

COMET: Co-Optimization of a CNN Model using Efficient-Hardware OBC Techniques

Authors: Chen, Boyang; Khan, Mohd Tasleem; Goussetis, George; Sellathurai, Mathini; Ding, Yuan; Mota, João F. C.; Lee, Jongeun;

COMET: Co-Optimization of a CNN Model using Efficient-Hardware OBC Techniques

Abstract

Convolutional Neural Networks (CNNs) are highly effective for computer vision and pattern recognition tasks; however, their computational intensity and reliance on hardware such as FPGAs pose challenges for deployment on low-power edge devices. In this work, we present COMET, a framework of CNN designs that employ efficient hardware offset-binary coding (OBC) techniques to enable co-optimization of performance and resource utilization. The approach formulates CNN inference with OBC representations of inputs (Scheme A) and weights (Scheme B) separately, enabling exploitation of bit-width asymmetry. The shift-accumulate operation is modified by incorporating the offset term with the pre-scaled bias. Leveraging inherent symmetries in Schemes A and B, we introduce four novel look-up table (LUT) techniques -- parallel, shared, split, and hybrid -- and analyze them to identify the most efficient options. Building on this foundation, we develop an OBC-based general matrix multiplication core using the im2col transformation, enabling efficient acceleration of a fixed-point modified LeNet-5 model. FPGA evaluations demonstrate that the proposed co-optimization approach significantly reduces resource utilization compared to state-of-the-art LeNet-5 based CNN designs, with minimal impact on accuracy.

Keywords

Signal Processing (eess.SP), I.2.7, Signal Processing, FOS: Electrical engineering, electronic engineering, information engineering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green