
doi: 10.1109/icnc.2007.82
Cutting tool condition monitoring is the key technique for realizing automatic and "un-manned" manufacturing processes. This project applies cutting force and acoustic emission transducers to monitor metal cutting processes. A B-spline neurofuzzy networks based tool wear state monitoring model has been presented. The model can accurately describe the nonlinear relation between the tool wear value and signal features. Compared with the normal neural networks, such as BP type ANNs, this model has the advantages of fast convergence and having local learning capabilities. Large amounts of monitoring experiments show that the application of B-spline neurofuzzy networks can improve the accuracy and reliability of the tool wear condition monitoring processes.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
