Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ETH Zürich Research Collection
Conference object . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bootstrapping Dynamic APSP via Sparsification

Authors: Kyng, Rasmus; Meierhans, Simon; Zöcklein, Gernot;

Bootstrapping Dynamic APSP via Sparsification

Abstract

We give a simple algorithm for the dynamic approximate All-Pairs Shortest Paths (APSP) problem. Given a graph G = (V, E, l) with polynomially bounded edge lengths, our data structure processes |E| edge insertions and deletions in total time |E|^{1+o(1)} and provides query access to |E|^o(1)-approximate distances in time Õ(1) per query. We produce a data structure that mimics Thorup-Zwick distance oracles [Thorup and Zwick, 2005], but is dynamic and deterministic. Our algorithm selects a small number of pivot vertices. Then, for every other vertex, it reduces distance computation to maintaining distances to a small neighborhood around that vertex and to the nearest pivot. We maintain distances between pivots efficiently by representing them in a smaller graph and recursing. We maintain these smaller graphs by (a) reducing vertex count using the dynamic distance-preserving core graphs of Kyng-Meierhans-Probst Gutenberg [Kyng et al., 2024] in a black-box manner and (b) reducing edge-count using a dynamic spanner akin to Chen-Kyng-Liu-Meierhans-Probst Gutenberg [Chen et al., 2024]. Our dynamic spanner internally uses an APSP data structure. Choosing a large enough size reduction factor in the first step allows us to simultaneously bootstrap a spanner and a dynamic APSP data structure. Notably, our approach does not need expander graphs, an otherwise ubiquitous tool in derandomization.

Keywords

FOS: Computer and information sciences, Dynamic graph algorithms, Computer Science - Data Structures and Algorithms, Vertex sparsification, Bootstrapping, Data Structures and Algorithms (cs.DS), Dynamic Graph Algorithms, Vertex Sparsification, Spanners, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green