
This paper studies the speedup for multi-level parallel computing. Two models of parallel speedup are considered, namely, fixed-size speedup and fixed-time speedup. Based on these two models, we start with the speedup formulation that takes into account uneven allocation and communication latency, and gives an accurate estimation. Next, we propose a high-level abstract case with providing a global view of possible performance enhancement, namely E-Amdahl's Law for fixed-size speedup and E-Gustafson's Law for fixed-time speedup. These two laws demonstrate seemingly opposing views about the speedup of multi-level parallel computing. Our study illustrates that they are not contradictory but unified and complementary. The results lead to a better understanding in the performance and scalability of multi-level parallel computing. The experimental results show that E-Amdahl's Law can be applied as a prediction model as well as a guide for the performance optimization in multi-level parallel computing.
:Engineering::Computer science and engineering [DRNTU]
:Engineering::Computer science and engineering [DRNTU]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
