Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants

Authors: Braeden C. Benedict; Mohammad Meraj Ghanbari; Rikky Muller;

Phased Array Beamforming Methods for Powering Biomedical Ultrasonic Implants

Abstract

Millimeter-scale implants using ultrasound for power and communication have been proposed for a range of deep-tissue applications, including neural recording and stimulation. However, published implementations have shown high sensitivity to misalignment with the external ultrasound transducer. Ultrasonic beamforming using a phased array to these implants can improve tolerance to misalignment, reduce implant volume, and allow multiple implants to be operated simultaneously in different locations. This paper details the design of a custom planar phased array ultrasound system, which is capable of steering and focusing ultrasound power within a 3D volume. Analysis and simulation is performed to determine the choice of array element pitch, with special attention given to maximizing the power available at the implant while meeting FDA limits for diagnostic ultrasound. Time reversal is proposed as a computationally simple approach to beamforming that is robust despite scattering and inhomogeneity of the acoustic medium. This technique is demonstrated both in active drive and pulse-echo modes, and it is experimentally compared with other beamforming techniques by measuring energy transfer efficiency. Simultaneous power delivery to multiple implants is also demonstrated.

10 pages, 13 figures, to be published in the IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. Replacement made after additions/edits suggested during review

Related Organizations
Keywords

Transducers, FOS: Electrical engineering, electronic engineering, information engineering, Ultrasonics, Equipment Design, Prostheses and Implants, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control, Ultrasonography

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green