Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Numerical Modelling Electronic Networks Devices and Fields
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2002
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FDTD, multiple‐region/FDTD, ray‐tracing/FDTD: a comparison on their applicability for human exposure evaluation

FDTD, multiple-region/FDTD, ray-tracing/FDTD: a comparison on their applicability for human exposure evaluation
Authors: BERNARDI, Paolo Italo; CAVAGNARO, Marta; P. D'Atanasio; E. Di Palma; PISA, Stefano; PIUZZI, Emanuele;

FDTD, multiple‐region/FDTD, ray‐tracing/FDTD: a comparison on their applicability for human exposure evaluation

Abstract

AbstractIn this paper, the finite‐difference time‐domain (FDTD), multiple‐region/FDTD (MR/FDTD) and ray‐tracing/FDTD (RT/FDTD) techniques have been compared with reference to the study of the field scattered by and induced inside an exposed target. The three techniques have been validated on a free‐space radiation problem through a comparison with the MoM solution. Compression techniques have been implemented to obtain a reduction of the computational costs associated with MR/FDTD, performing an accurate evaluation of the associated errors. The applicability and accuracy of the three techniques have then been tested studying the exposure of a sphere to a half‐wavelength dipole. The obtained results have shown that the best computational performances are achieved employing RT/FDTD. However, this technique gives accurate results only in the radiative far‐field of the antenna. MR/FDTD, instead, gives accurate predictions of field distributions for a wide range of distances between the scatterer and the antenna and, thanks to the introduction of compression techniques, requires acceptable computational costs. Pure FDTD, finally, is the most suitable technique, among the three considered, when the scatterer is close to the antenna but its computational costs become prohibitive for large‐scale problems. Copyright © 2002 John Wiley & Sons, Ltd.

Keywords

electromagnetic scattering; fdtd; hybrid techniques; multiple-region/fdtd; ray-tracing/fdtd; specific absorption rate, Basic methods for problems in optics and electromagnetic theory, electromagnetic scattering, hybrid techniques, Diffraction, scattering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!