
The fundamental problem in this research is to explore a more profound understanding of both performance and efficiency in quantity computing. Successful implementation of algorithms in computational computing environments can unlock the potential for significant improvements in information processing and neural network modeling. This research focuses on developing Madaline and Perceptron algorithms using a quantum approach. This study compares the two algorithms regarding the accuracy and epoch of the test results. The data set used in this study is a lens data set. There are four attributes: 1) patient age: young, prepresbyopia, presbyopia 2) eyeglass prescription: myopia, hypermetropia, 3) astigmatic: no, yes. 4) tear production rate: reduced, normal. There are three classes: 1) patients must have hard contact lenses installed, 2) patients must have soft contact lenses installed, and 3) patients cannot have contact lenses installed. The number of data is 24 data. The result of this research is the development of the Madaline and Perceptron algorithms with a quantum computing approach. Comparing these algorithms shows that the best accuracy is the Perceptron algorithm, namely 100%. In comparison, Madaline is 62.5%, and the smallest epoch is the Madaline algorithm, namely 4 epochs, while the smallest Perceptron epoch is 317. This research significantly contributes to the development of computing and neural networks, with potential applications extending from data processing to more accurate modeling in artificial intelligence, data analysis, and understanding complex patterns.
TA168, perceptron, neural network, quantum computing;, madaline, Information technology, quantum bit, T58.5-58.64, quantum computing, Systems engineering
TA168, perceptron, neural network, quantum computing;, madaline, Information technology, quantum bit, T58.5-58.64, quantum computing, Systems engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
