
handle: 10220/7004 , 10356/79797
In this paper, we consider the problem of separation of unknown number of sources from their underdetermined convolutive mixtures via time-frequency (TF) masking. We propose two algorithms, one for the estimation of the masks which are to be applied to the mixture in the TF domain for the separation of signals in the frequency domain, and the other for solving the permutation problem. The algorithm for mask estimation is based on the concept of angles in complex vector space. Unlike the previously reported methods, the algorithm does not require any estimation of the mixing matrix or the source positions for mask estimation. The algorithm clusters the mixture samples in the TF domain based on the Hermitian angle between the sample vector and a reference vector using the well known k -means or fuzzy c -means clustering algorithms. The membership functions so obtained from the clustering algorithms are directly used as the masks. The algorithm for solving the permutation problem clusters the estimated masks by using k-means clustering of small groups of nearby masks with overlap. The effectiveness of the algorithm in separating the sources, including collinear sources, from their underdetermined convolutive mixtures obtained in a real room environment, is demonstrated.
:Engineering::Electrical and electronic engineering::Electronic systems::Signal processing [DRNTU], DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing, 530, 004
:Engineering::Electrical and electronic engineering::Electronic systems::Signal processing [DRNTU], DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing, 530, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
