Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Singularly Optimal Randomized Leader Election

Authors: Kutten, Shay; Moses Jr., William K.; Pandurangan, Gopal; Peleg, David;

Singularly Optimal Randomized Leader Election

Abstract

This paper concerns designing distributed algorithms that are singularly optimal, i.e., algorithms that are simultaneously time and message optimal, for the fundamental leader election problem in networks. Our main result is a randomized distributed leader election algorithm for asynchronous complete networks that is essentially (up to a polylogarithmic factor) singularly optimal. Our algorithm uses $O(n)$ messages with high probability and runs in $O(\log^2 n)$ time (with high probability) to elect a unique leader. The $O(n)$ message complexity should be contrasted with the $Ω(n \log n)$ lower bounds for the deterministic message complexity of leader election algorithms (regardless of time), proven by Korach, Moran, and Zaks (TCS, 1989) for asynchronous algorithms and by Afek and Gafni (SIAM J. Comput., 1991) for synchronous networks. Hence, our result also separates the message complexities of randomized and deterministic leader election. More importantly, our (randomized) time complexity of $O(\log^2 n)$ for obtaining the optimal $O(n)$ message complexity is significantly smaller than the long-standing $\tildeΘ(n)$ time complexity obtained by Afek and Gafni and by Singh (SIAM J. Comput., 1997) for message optimal (deterministic) election in asynchronous networks. In synchronous complete networks, Afek and Gafni showed an essentially singularly optimal deterministic algorithm with $O(\log n)$ time and $O(n \log n)$ messages. Ramanathan et al. (Distrib. Comput. 2007) used randomization to improve the message complexity, and showed a randomized algorithm with $O(n)$ messages and $O(\log n)$ time (with failure probability $O(1 / \log^{Ω(1)}n)$). Our second result is a tightly singularly optimal randomized algorithm, with $O(1)$ time and $O(n)$ messages, for this setting, whose time bound holds with certainty and message bound holds with high probability.

24 pages. Full version of paper accepted at DISC 2020

Keywords

FOS: Computer and information sciences, Complete networks, Randomized algorithms, Asynchronous systems, G.3, G.2.2, 004, Leader election, Computer Science - Distributed, Parallel, and Cluster Computing, F.2.2; F.2.3; G.2.2; G.3, Computer Science - Data Structures and Algorithms, F.2.3, Data Structures and Algorithms (cs.DS), Distributed, Parallel, and Cluster Computing (cs.DC), F.2.2, Singularly optimal, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green