Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Surface Depth Estimation From Multiview Stereo Satellite Images With Distribution Contrast Network

Authors: Ziyang Chen; Wenting Li; Zhongwei Cui; Yongjun Zhang;

Surface Depth Estimation From Multiview Stereo Satellite Images With Distribution Contrast Network

Abstract

The calculation of surface depth based on multiview stereo (MVS) satellite imagery is of significant importance in fields such as military and surveying. The challenge in extracting depth information from satellite imagery lies in the fact that these images often exhibit similar colors, necessitating the development of algorithms that can integrate shape and texture information. Moreover, the application of classical convolutional neural network (CNN) MVS is limited by its inability to capture long-range terrain relationships, which presents a bottleneck in existing surface depth estimation algorithms. To address the above problems, we propose the Distribution Contrast Network for Surface Depth Estimation from Satellite MultiView Stereo Images (DC-SatMVS), a novel satellite MVS network. In order to learn short-range and long-range features, we designed separate CNN and ViT branches. To emphasize the importance of shape and texture, we propose the Distribution Contrast Loss mechanism. This mechanism supervises the model training based on the similarity between the predicted depth and the ground truth depth distribution. Experimental results demonstrate that our method achieves state-of-the-art (SOTA) performance. We produce a remarkable 18.14% reduction in root mean square error compared to the Sat-MVSF on the WHU-TLC dataset. To validate the generalization performance of our framework, we trained and tested it on the DTU dataset, a common MVS dataset, and achieve SOTA results in this dataset as well.

Related Organizations
Keywords

Ocean engineering, QC801-809, surface depth estimation, Geophysics. Cosmic physics, satellite stereo reconstruction, Multiview stereo (MVS), TC1501-1800

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold