
In optimization and decision-making, multi-objective optimization has emerged as a pivotal challenge. Over the past three decades, the concerted efforts of scholars and practitioners across various disciplines have significantly advanced the study and implementation of Multi-Objective Evolutionary Algorithms (MOEAs). MOEAs stand at the forefront of multi-objective decision-making methodologies, marking a vibrant area of inquiry within evolutionary computation. This body of work categorizes MOEAs into three distinct streams: Decomposition-based MOEA algorithms, Dominant relationship-based MOEA algorithms, and Evaluation index-based MOEA algorithms. Focusing specifically on dominance-based MOEAs, this study integrates them with chaotic evolution (CE) strategies to enhance the efficacy of multi-objective optimization processes. Through comparative analysis against traditional algorithms, the newly proposed chaotic MOEA demonstrates superior optimization performance, thereby setting a robust groundwork for the continuous evolution and application of MOEAs.
Evolutionary multi-objective optimization, search strategy, chaotic evolution, Electrical engineering. Electronics. Nuclear engineering, multi-objective optimization problem, multi-objective chaotic evolution algorithm, optimization, TK1-9971
Evolutionary multi-objective optimization, search strategy, chaotic evolution, Electrical engineering. Electronics. Nuclear engineering, multi-objective optimization problem, multi-objective chaotic evolution algorithm, optimization, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
