Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Methods in Ecology a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Methods in Ecology and Evolution
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Methods in Ecology and Evolution
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel method for predicting ecological interactions with an unsupervised machine learning algorithm

Authors: Sagar Adhurya; Young‐Seuk Park;

A novel method for predicting ecological interactions with an unsupervised machine learning algorithm

Abstract

Abstract This gap in knowledge regarding ecological interactions has prompted the development of various predictive approaches. Traditionally, ecological interactions have been inferred using traits. However, the lack of trait information for numerous organisms necessitates using phylogenetic data and statistical insights from interaction matrices for prediction. Previous studies have overlooked the validation of model‐predicted interactions. This study used a novel method in predicting ecological interactions using a self‐organizing map (SOM), an unsupervised machine learning algorithm. The SOM learns from the input interaction matrix by grouping the nodes into output layers based on their interactions. Subsequently, the trained model predicts the interactions as scores. To distinguish between interactions and non‐interactions, we employed F1 score maximization, setting scores above a specific threshold as interactions and the remainder as non‐interactions. We applied this method to three unipartite metawebs and one bipartite metaweb and subsequently validated the predicted interactions using two innovative approaches: taxonomic and interaction recovery validation. Our method exhibited outstanding predictive performance, particularly for large networks. Various binary classification performance indicators, including F1 score (0.84–0.97) and accuracy (0.97–0.99), indicated high performance. Moreover, the method generated minimal predicted interactions, signifying low noise in the predictions, particularly for large networks. Taxonomic validation excels in metawebs with a connectance >0.1 but performs poorly in metawebs with very low connectance. In contrast, interaction recovery was most effective in larger metawebs. Our proposed method excels at making highly accurate predictions of ecological interactions with minimal noise, solely utilizing input interaction data without relying on traits or phylogenetic information regarding interacting nodes. These predictions are particularly precise for large networks, underscoring their potential to address knowledge gaps in emerging extensive metawebs. Notably, taxonomic validation and interaction recovery methods are sensitive to connectance and network size, respectively, suggesting prospects for developing robust interaction validation methods.

Related Organizations
Keywords

Ecology, Evolution, metaweb, interaction validation, Eltonian shortfall, interaction prediction, ecological interaction, QH359-425, ecological network, QH540-549.5

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold