
The promise of model-predictive control in robotics has led to extensive development of efficient numerical optimal control solvers in line with differential dynamic programming because it exploits the sparsity induced by time. In this work, we argue that this effervescence has hidden the fact that sparsity can be equally exploited by standard nonlinear optimization. In particular, we show how a tailored implementation of sequential quadratic programming achieves state-of-the-art model-predictive control. Then, we clarify the connections between popular algorithms from the robotics community and well-established optimization techniques. Further, the sequential quadratic program formulation naturally encompasses the constrained case, a notoriously difficult problem in the robotics community. Specifically, we show that it only requires a sparsity-exploiting implementation of a state-of-the-art quadratic programming solver. We illustrate the validity of this approach in a comparative study and experiments on a torque-controlled manipulator. To the best of our knowledge, this is the first demonstration of closed loop nonlinear model-predictive control with constraints on a real robot.
Model-Predictive Control, [SPI.AUTO] Engineering Sciences [physics]/Automatic, Optimization and Optimal Control, Motion and Path Planning, Reactive and Sensor-Based Planning
Model-Predictive Control, [SPI.AUTO] Engineering Sciences [physics]/Automatic, Optimization and Optimal Control, Motion and Path Planning, Reactive and Sensor-Based Planning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
