
Integrated sensing and communication (ISAC) technology enhances the spectrum utilization of the system by interchanging the spectrum between communication and sensing, which has gained popularity in scenarios such as vehicle-to-everything (V2X). With the aim of providing more dependable services for vehicles in high-speed mobile scenarios, we propose a scheme based on sense-assisted polarisation coding. Specifically, the base station acquires the vehicle's positional information and channel strength parameters through the forward time slot echo information. This information informs the creation of the coding architecture for the following time slot. This approach not only optimizes resource consumption but also enhances system dependability. Our simulation results confirm that the introduced scheme displays a notable improvement in the bit error rate (BER) when compared to traditional communication frameworks, maintaining this advantage across both unimpeded and compromised channel conditions.
Sense-assisted communication, Integrated sensing and communication (ISAC), Vehicle-to-everything (V2X), Encoding, Information technology, Polar code construction, T58.5-58.64
Sense-assisted communication, Integrated sensing and communication (ISAC), Vehicle-to-everything (V2X), Encoding, Information technology, Polar code construction, T58.5-58.64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
