Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Applied Analysis & Computation
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2023
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
GREDOS
Article . 2023
License: CC BY NC ND
Data sources: GREDOS
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

NEW APPROACH BASED ON COLLOCATION AND SHIFTED CHEBYSHEV POLYNOMIALS FOR A CLASS OF THREE-POINT SINGULAR BVPS

New approach based on collocation and shifted Chebyshev polynomials for a class of three-point singular BVPs
Authors: Sriwastav, Nikhil; Barnwal, Amit K.; Ramos Calle, Higinio; Agarwal, Ravi P.; Singh, Mehakpreet;

NEW APPROACH BASED ON COLLOCATION AND SHIFTED CHEBYSHEV POLYNOMIALS FOR A CLASS OF THREE-POINT SINGULAR BVPS

Abstract

[EN]In the recent decades, variety of real-life problems arises in astrophysics have been mimic using the class of three-point singular boundary value problems (BVPs). Finding an effective and accurate approach for a class of three-point BVPs is still a difficult problem, though. The goal of this paper is to design a numerical strategy for approximating a class of three-point singular boundary value problems using the collocation technique and shifted Chebyshev polynomials. Utilizing shifted Chebyshev polynomials, the problem is reduced to a matrix form, which is then converted into a system of nonlinear algebraic equations by employing the collocation points. The key advantages of the new approach are (a) it is a straightforward mathematical formulation, which makes it effortless to code, and (b) it is easily adaptable to solve various classes of three-point singular boundary value problems. The convergence analysis is carried out to ensure the viability of the proposed scheme.

Keywords

Best approximation, Chebyshev systems, Numerical solution of boundary value problems involving ordinary differential equations, collocation method, Shifted Chebyshev polynomials, three-point singular BVPs, Convergence analysis, Singular nonlinear boundary value problems for ordinary differential equations, shifted Chebyshev polynomials, 12 Matem?ticas, Nonlocal and multipoint boundary value problems for ordinary differential equations, Collocation method, Numerical analysis, convergence analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold