Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACM Transactions on Knowledge Discovery from Data
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards Sequence Utility Maximization under Utility Occupancy Measure

Authors: Gengsen Huang; Wensheng Gan; Philip S. Yu;

Towards Sequence Utility Maximization under Utility Occupancy Measure

Abstract

The discovery of utility-driven patterns is a valuable and difficult research topic. It can extract significant and interesting information from specific and varied databases, increasing the value of the services provided. In practice, the utility measure is often used to reflect the importance, profit, or risk of an object or pattern. In the database, while utility is a flexible criterion for patterns, it is also a somewhat limited criterion due to the overlook of utility sharing. This leads to the derived patterns only exploring partial and local knowledge in the database. Utility occupancy considers the problem of mining with high utility but low occupancy. However, existing studies are focused on itemsets that cannot reveal the temporal relationship of object occurrences. Therefore, this article first defines the concept of utility occupancy of sequence data and raises the problem of High-Utility Occupancy Sequential Pattern Mining (HUOSPM). Three dimensions, including frequency, utility, and occupancy, are comprehensively evaluated in HUOSPM. An algorithm called Sequence Utility Maximization with Utility occupancy measure (SUMU) is proposed. Furthermore, two data structures for storing pattern-related information, including Utility-Occupancy-List-Chain (UOL-Chain) and Utility-Occupancy-Table (UO-Table), are designed, and six upper bounds are proposed to improve efficiency. Extensive experiments are conducted to evaluate the efficiency and effectiveness of the novel algorithm. A specific case study is provided, and the effects of different upper bounds and pruning strategies are analyzed. The comprehensive results suggest that the HUOSPM task is useful and efficient.

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Databases, Computer Science - Artificial Intelligence, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green