
arXiv: 2205.10715
We study Concave Constrained Markov Decision Processes (Concave CMDPs) where both the objective and constraints are defined as concave functions of the state-action occupancy measure. We propose the Variance-Reduced Primal-Dual Policy Gradient Algorithm (VR-PDPG), which updates the primal variable via policy gradient ascent and the dual variable via projected sub-gradient descent. Despite the challenges posed by the loss of additivity structure and the nonconcave nature of the problem, we establish the global convergence of VR-PDPG by exploiting a form of hidden concavity. In the exact setting, we prove an O(T-1/3) convergence rate for both the average optimality gap and constraint violation, which further improves to O(T-1/2) under strong concavity of the objective in the occupancy measure. In the sample-based setting, we demonstrate that VR-PDPG achieves an O(ε-4) sample complexity for ε-global optimality. Moreover, by incorporating a diminishing pessimistic term into the constraint, we show that VR-PDPG can attain a zero constraint violation without compromising the convergence rate of the optimality gap. Finally, we validate our methods through numerical experiments.
FOS: Computer and information sciences, Computer Science - Machine Learning, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
