
Comparative analysis of various neural network models was carried out for natural gas quality analysis. Based on the results of such analysis, it was concluded that recurrent neural networks are main statistical models in this problem. This paper considers a recurrent neural network with a more complex architecture. The neural network with gated re-current unit is used in the discussed task in particular. The comparison of the main recurrent neural network models (simple recurrent neural network, recurrent neural network with long short-term memory, recurrent neural network with gated recurrent unit) is shown. Models accuracy characteristics are shown for analyzing the models perfor-mance. В статье рассматривается рекуррентная нейронная сеть с управляемым рекуррентным блоком. Показано сравнение основ-ных моделей рекуррентных нейронных сетей (простая рекуррентная нейронная сеть, рекуррентная нейронная сеть с долгой кратковременной памятью, рекуррентная нейронная сеть с управляемым рекуррентным блоком). Приведены точностные характеристики нейросетевых моделей для анализа качества природного газа.
рекуррентные нейронные сети, анализ качества природного газа, управляемый рекуррентный блок
рекуррентные нейронные сети, анализ качества природного газа, управляемый рекуррентный блок
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
