
arXiv: 2506.23273
Despite the advancements of large language models, text2sql still faces many challenges, particularly with complex and domain-specific queries. In finance, database designs and financial reporting layouts vary widely between financial entities and countries, making text2sql even more challenging. We present FinStat2SQL, a lightweight text2sql pipeline enabling natural language queries over financial statements. Tailored to local standards like VAS, it combines large and small language models in a multi-agent setup for entity extraction, SQL generation, and self-correction. We build a domain-specific database and evaluate models on a synthetic QA dataset. A fine-tuned 7B model achieves 61.33\% accuracy with sub-4-second response times on consumer hardware, outperforming GPT-4o-mini. FinStat2SQL offers a scalable, cost-efficient solution for financial analysis, making AI-powered querying accessible to Vietnamese enterprises.
Accepted for The 18th International Natural Language Generation Conference (INLG)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Artificial Intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
