
arXiv: 2202.12481
Program representation, which aims at converting program source code into vectors with automatically extracted features, is a fundamental problem in programming language processing (PLP). Recent work tries to represent programs with neural networks based on source code structures. However, such methods often focus on the syntax and consider only one single perspective of programs, limiting the representation power of models. This paper proposes a multi-view graph (MVG) program representation method. MVG pays more attention to code semantics and simultaneously includes both data flow and control flow as multiple views. These views are then combined and processed by a graph neural network (GNN) to obtain a comprehensive program representation that covers various aspects. We thoroughly evaluate our proposed MVG approach in the context of algorithm detection, an important and challenging subfield of PLP. Specifically, we use a public dataset POJ-104 and also construct a new challenging dataset ALG-109 to test our method. In experiments, MVG outperforms previous methods significantly, demonstrating our model's strong capability of representing source code.
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Computer Science - Programming Languages, Machine Learning (cs.LG), Programming Languages (cs.PL)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Software Engineering, Computer Science - Programming Languages, Machine Learning (cs.LG), Programming Languages (cs.PL)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
