Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Drug Design, Develop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Drug Design, Development and Therapy
Article . 2025 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Network Pharmacology Approach to Unveiling the Mechanism of Wolfberry Mulberry Raspberry Decoction in the Treatment of Sepsis-Induced Myocardial Dysfunction

Authors: Qingqiong Zhang; Lianbin Wen; Junxian Li; Peng Liu; Xuechun Sun; Qingsong Liu; Xiaomei Chen; +1 Authors

Network Pharmacology Approach to Unveiling the Mechanism of Wolfberry Mulberry Raspberry Decoction in the Treatment of Sepsis-Induced Myocardial Dysfunction

Abstract

OBJECTIVE: To investigate the mechanisms by which the Wolfberry Mulberry Raspberry Decoction (WMRD) affects Sepsis-Induced Myocardial Dysfunction (SIMD) using network pharmacology and experimental validation. METHODS: We explored the TCM Systems Pharmacology Database to gather biological data for WMRD compounds. The GeneCards, PharmGkb, Therapeutic Target Database (TTD), and Online Mendelian Inheritance in Man (OMIM) databases were utilized to identify target proteins associated with SIMD. Overlapping elements between SIMD and drug targets were analyzed. This data was integrated into the STRING platform to visualize protein interactions. Cytoscape software was then used to construct a network diagram illustrating relationships between drug components and their corresponding targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathways analyses were conducted using a database for annotation and visualization. Predictive pathways were validated through experimental studies on cellular and animal models. RESULTS: Network pharmacology analysis identified 58 active compounds of WMRD and revealed that WMRD partially ameliorated SIMD by modulating apoptosis, TNF signaling pathway and IL-17 signaling pathway. Quercetin, one of the main components of WMRD, suppresses apoptosis and oxidative stress in H9C2 cell via regulating the MMP9, TNF-α, IL-1β and BCL/BAX axis. Quercetin increased BCL-2 expression and decreased MMP9, TNF-α, IL-1β, Bax, and Caspase-3 protein expression in H9C2 cells treated with LPS. Moreover, Quercetin attenuated LPS-Induced myocardial injury and apoptosis in SIMD mice model. Therefore, this study suggests that Wolfberry Mulberry Raspberry decoction may be a potential drug for the treatment of septic myocardial injury, in which Quercetin may play an important role. CONCLUSION: Quercetin, a key component of WMRD, suppressed H9C2 cell apoptosis by dysregulating MMP9, TNF-α, IL-1β, and BCL/BAX axis, highlighting its therapeutic potential in SIMD.

Related Organizations
Keywords

Sepsis-Induced Myocardial Dysfunction, Quercetin, Wolfberry Mulberry Raspberry Decoction, Therapeutics. Pharmacology, RM1-950, H9C2 cells, Network pharmacology, Original Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold