
The most existing constrained optimization evolutionary algorithms (COEAs) for solving constrained optimization problems (COPs) only focus on combining a single EA with a single constraint-handling technique (CHT). As a result, the search ability of these algorithms could be limited. Motivated by these observations, we propose an ensemble method which combines different style of EA and CHT from the EA knowledge-base and the CHT knowledge-base, respectively. The proposed method uses two EAs and two CHTs. It randomly combines them to generate novel offspring individuals during each generation. Simulations and comparisons based on four benchmark COPs and engineering optimization problem demonstrate the effectiveness of the proposed approach.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
