Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Sustainab...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling Salt Rejection in Nanofiltration and Reverse Osmosis Membranes Using the Spiegler-Kedem Model Enhanced by a Bio-Inspired Metaheuristic Algorithms: Particle Swarm Optimization and Grey Wolf Optimization

Authors: Abbi, Bouchra; Touazit, Azzeddin; Gliti, Oussama; Igouzal, Mohammed; Pontie, Maxime; Lemenand, Thierry; Charki, Abderafi;

Modelling Salt Rejection in Nanofiltration and Reverse Osmosis Membranes Using the Spiegler-Kedem Model Enhanced by a Bio-Inspired Metaheuristic Algorithms: Particle Swarm Optimization and Grey Wolf Optimization

Abstract

Pressure-driven membrane processes, such as reverse osmosis and nanofiltration, represent credible processes for salinity reduction in ground, surface, and seawater, as well as in mining and urban wastewater. The separation characteristics and productivity of these processes depend on several factors, including molecular weight cut-off and operating conditions (applied pressure, recovery rate..). This study aims to model salt rejection performance of water in Tan-Tan City (Morocco) using nanofiltration membranes (NF90, NF200, NE90) and reverse osmosis membranes (BW30LE), under various operational conditions, used the Spiegler-Kedem model. Both the Particle Swarm Optimization and Grey Wolf Optimization algorithms were applied to optimize the model parameters to fit experimental data. The results showed excellent agreement between experimental rejection rates and model-predicted rejection rates for both algorithms. Additionally, Grey Wolf Optimization model gave slightly better results compared to Particle Swarm Optimization. The combined use of a well-established theoretical framework and efficient optimization algorithms provides a significant step forward in the quest for reliable and sustainable water resources.

Related Organizations
Keywords

Spiegler-Kedem model, Particle Swarm Optimization, Grey Wolf Optimization, Desalination and water treatment, NF and RO membranes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold