
Pressure-driven membrane processes, such as reverse osmosis and nanofiltration, represent credible processes for salinity reduction in ground, surface, and seawater, as well as in mining and urban wastewater. The separation characteristics and productivity of these processes depend on several factors, including molecular weight cut-off and operating conditions (applied pressure, recovery rate..). This study aims to model salt rejection performance of water in Tan-Tan City (Morocco) using nanofiltration membranes (NF90, NF200, NE90) and reverse osmosis membranes (BW30LE), under various operational conditions, used the Spiegler-Kedem model. Both the Particle Swarm Optimization and Grey Wolf Optimization algorithms were applied to optimize the model parameters to fit experimental data. The results showed excellent agreement between experimental rejection rates and model-predicted rejection rates for both algorithms. Additionally, Grey Wolf Optimization model gave slightly better results compared to Particle Swarm Optimization. The combined use of a well-established theoretical framework and efficient optimization algorithms provides a significant step forward in the quest for reliable and sustainable water resources.
Spiegler-Kedem model, Particle Swarm Optimization, Grey Wolf Optimization, Desalination and water treatment, NF and RO membranes
Spiegler-Kedem model, Particle Swarm Optimization, Grey Wolf Optimization, Desalination and water treatment, NF and RO membranes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
