
doi: 10.1002/rnc.4959
SummaryThis article considers the parameter estimation for a special bilinear system with colored noise. Its input‐output representation is derived by eliminating the state variables in the bilinear system. Based on the input‐output representation of the bilinear system, a multiinnovation generalized extended stochastic gradient (MI‐GESG) algorithm is proposed by using the multiinnovation identification theory. Furthermore, a decomposition‐based multiinnovation (ie, hierarchical multiinnovation) generalized extended stochastic gradient identification (H‐MI‐GESG) algorithm is derived to enhance the parameter estimation accuracy by using the hierarchical identification principle, and a GESG algorithm is presented for comparison. Compared with the existing identification algorithms for the bilinear system, the proposed MI‐GESG and H‐MI‐GESG algorithms can generate more accurate parameter estimation. Finally, a simulation example is provided to verify the effectiveness of the proposed algorithms.
hierarchical identification, Identification in stochastic control theory, multiinnovation, Nonlinear systems in control theory, bilinear system, stochastic gradient, parameter estimation
hierarchical identification, Identification in stochastic control theory, multiinnovation, Nonlinear systems in control theory, bilinear system, stochastic gradient, parameter estimation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
