Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/jiot.2...
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Device Scheduling for Secure Aggregation in Wireless Federated Learning

Authors: Na Yan; Kezhi Wang; Kangda Zhi; Cunhua Pan; Kok Keong Chai; H. Vincent Poor;

Device Scheduling for Secure Aggregation in Wireless Federated Learning

Abstract

Federated learning (FL) has been widely investigated in academic and industrial fields to resolve the issue of data isolation in the distributed Internet of Things (IoT) while maintaining privacy. However, challenges persist in ensuring adequate privacy and security during the aggregation process. In this paper, we investigate device scheduling strategies that ensure the security and privacy of wireless FL. Specifically, we measure the privacy leakage of user data using differential privacy (DP) and assess the security level of the system through mean square error security (MSE-security). We commence by deriving analytical results that reveal the impact of device scheduling on privacy and security protection, as well as on the learning process. Drawing from these analytical findings, we propose three scheduling policies that can achieve secure aggregation of wireless FL under different cases of channel noise. In particular, we formulate an integer nonlinear fractional programming problem to improve the learning perfor- mance while guaranteeing privacy and security of wireless FL. We provide an insightful solution in the closed form to the optimization problem when the model has a high dimension. For the general case, we propose a secure and private aggregation (SPA) algorithm based on the branch-and- bound (BnB) method, which can obtain the optimal solution with low complexity. The effectiveness of the proposed schemes for device selection is validated through simulations.

Related Organizations
Keywords

device scheduling, branch-and-bound (BnB), integer nonlinear fractional programming, federated learning (FL), 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green