
Summary: In an earlier paper, we proposed a modified fuzzy programming method to handle higher level multi-level decentralized programming problems (ML(D)PPs). Here we present a simple and practical method to solve the same. This method overcomes the subjectivity inherent in choosing the tolerance values and the membership functions. We consider a linear ML(D)PP and apply linear programming (LP) for the optimization of the system in a supervised search procedure, supervised by the higher level decision maker (DM). The higher level DM provides the preferred values of the decision variables under his control to enable the lower level DM to search for his optimum in a narrower feasible space. The basic idea is to reduce the feasible space of a decision variable at each level until a satisfactory point is sought at the last level.
Linear programming, ideal/optimal solution, fuzzy weights, sequential linear goal programming, Fuzzy and other nonstochastic uncertainty mathematical programming, linear multi-level programming problem, satisfactory/compromise solution, weighting method
Linear programming, ideal/optimal solution, fuzzy weights, sequential linear goal programming, Fuzzy and other nonstochastic uncertainty mathematical programming, linear multi-level programming problem, satisfactory/compromise solution, weighting method
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
