Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Security and Safety-Critical Learning-Based Collaborative Control for Multiagent Systems

Authors: Bing Yan; Peng Shi; Chee Peng Lim; Yuan Sun; Ramesh K. Agarwal;

Security and Safety-Critical Learning-Based Collaborative Control for Multiagent Systems

Abstract

This article presents a novel learning-based collaborative control framework to ensure communication security and formation safety of nonlinear multiagent systems (MASs) subject to denial-of-service (DoS) attacks, model uncertainties, and barriers in environments. The framework has a distributed and decoupled design at the cyber-layer and the physical layer. A resilient control Lyapunov function-quadratic programming (RCLF-QP)-based observer is first proposed to achieve secure reference state estimation under DoS attacks at the cyber-layer. Based on deep reinforcement learning (RL) and control barrier function (CBF), a safety-critical formation controller is designed at the physical layer to ensure safe collaborations between uncertain agents in dynamic environments. The framework is applied to autonomous vehicles for area scanning formations with barriers in environments. The comparative experimental results demonstrate that the proposed framework can effectively improve the resilience and robustness of the system.

Related Organizations
Keywords

multiagent systems, 4007 Control engineering, mechatronics and robotics, uncertain agents, Institute for Sustainable Industries and Liveable Cities, formation control, autonomous vehicles, denial-of-service attack, collaboration, system stability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!