
pmid: 29990232
In this paper, a constrained space maneuver vehicles trajectory optimization problem is formulated and solved using a new three-layer-hybrid optimal control solver. To decrease the sensitivity of the initial guess and enhance the stability of the algorithm, an initial guess generator based on a specific stochastic algorithm is applied. In addition, an improved gradient-based algorithm is used as the inner solver, which can offer the user more flexibility to control the optimization process. Furthermore, in order to analyze the quality of the solution, the optimality verification conditions are derived. Numerical simulations were carried out by using the proposed hybrid solver and the results indicate that the proposed strategy can have better performance in terms of convergence speed and convergence ability when compared with other typical optimal control solvers. A Monte-Carlo simulation was performed and the results show a robust performance of the proposed algorithm in dispersed conditions.
Improved gradient-based algorithm, Space vehicles, 510, Optimal control, Atmospheric modeling, Aerodynamics, Mathematical model, Trajectory optimization, Initial guess, Space maneuver vehicles (SMVs), Optimality verification
Improved gradient-based algorithm, Space vehicles, 510, Optimal control, Atmospheric modeling, Aerodynamics, Mathematical model, Trajectory optimization, Initial guess, Space maneuver vehicles (SMVs), Optimality verification
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 66 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
