Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Fluids
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
International Journal for Numerical Methods in Fluids
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The design of improved smoothing operators for finite volume flow solvers on unstructured meshes

Authors: de Foy, Benjamin; Dawes, William;

The design of improved smoothing operators for finite volume flow solvers on unstructured meshes

Abstract

AbstractSpatial operators used in unstructured finite volume flow solvers are analysed for accuracy using Taylor series expansion and Fourier analysis. While approaching second‐order accuracy on very regular grids, operators in common use are shown to have errors resulting in accuracy of only first‐, zeroth‐ or even negative‐order on three‐dimensional tetrahedral meshes. A technique using least‐squares optimization is developed to design improved operators on arbitrary meshes. This is applied to the fourth‐order edge sum smoothing operator. The improved numerical dissipation leads to a much more accurate prediction of the Strouhal number for two‐dimensional flow around a cylinder and a reduction of a factor of three in the loss coefficient for inviscid flow over a three‐dimensional hump. Copyright © 2001 John Wiley & Sons, Ltd.

Related Organizations
Keywords

accuracy, flow over three-dimensional hump, Navier-Stokes equations for incompressible viscous fluids, Finite volume methods applied to problems in fluid mechanics, Fourier analysis, least squares, Error bounds for initial value and initial-boundary value problems involving PDEs, Taylor series, improved numerical dissipation, unstructured finite volume flow solvers, fourth-order edge sum smoothing operator, tetrahedron, Strouhal number

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!