Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Computer Applications
Article . 2011 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Effective Comparison of Graph Clustering Algorithms via Random Graphs

Authors: Mohit Kumar; Deepak Arora; Shashwat Shukla; Reena Mishra;

An Effective Comparison of Graph Clustering Algorithms via Random Graphs

Abstract

graph clustering algorithms have been proposed in recent past researches, each algorithm having its own advantages and drawbacks. All these algorithms rely on a very different approach so it's really hard to say that which one is the most efficient and optimal if we talk in the sense of performance. It is really hard to decide that which algorithm is beneficial in case of highly complex networks like PPI networks which consist of thousands of nodes. The paper proposes an effective data comparison of RNSC (Restricted Neighbourhood Search Clustering) and MCL (Markov Clustering) algorithms based on Erdos-Renyi and Power-Law Distribution graphs. The basic parameters used for comparison are Edge Density, Run Time, Number of Nodes, Cluster Size and Singleton Cluster. Our approach is an effective one because firstly we have used two types of graph generators, Erdos-Renyi and Scaled-Free for generation of input graphs which are very much closer to the real input graphs and secondly we have generated input graphs having more than 1000 nodes, so in our approach we have used both the algorithms for clustering highly complex input graphs just like PPI networks. For comparison and analysis purpose we have collected data sets and generated some graphs based on these parameters. The proposed approach depicts which algorithm is best to be used for clustering such complex graphs and also some fields for extension if possible in both them. All graphs used in this thesis are unweighted and undirected.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold