
Scanning radar can be used to obtain images of targets in forward-looking area, and has attracted much attention in many fields, such as ocean monitoring, air-to-ground attack, navigation, and so on. However, its azimuth resolution is extremely poor due to the limitation of the antenna size. In order to break through the limitation, many superresolution algorithms have been proposed, and iterative shrinkage-thresholding algorithm (ISTA) is one of the most famous methods because of its antinoise ability and simplicity. In the meantime, the slow convergence of iterative shrinkage-thresholding algorithm is also known to all. In this article, a second-order accelerated ISTA for scanning radar forward-looking superresolution imaging is proposed. In this algorithm, a prediction vector is constructed before each iteration by using the first and the second-order difference information of iteration vectors to reduce the number of iterations and get a faster convergence speed. In the end, simulations and experimental results are given to illustrate the effectiveness of the accelerated imaging algorithm.
Ocean engineering, slow convergence, Accelerated imaging, QC801-809, iterative shrinkage-thresholding algorithm (ISTA), scanning radar, Geophysics. Cosmic physics, azimuth resolution, TC1501-1800
Ocean engineering, slow convergence, Accelerated imaging, QC801-809, iterative shrinkage-thresholding algorithm (ISTA), scanning radar, Geophysics. Cosmic physics, azimuth resolution, TC1501-1800
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
